一、分离变量

球坐标系下拉普拉斯方程的展开形式为

1r2r(r2ur)+1r2sinθθ(sinθuθ)+1r2sin2θ2uφ2=0\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u}{\partial r}\right)+\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^2 \sin ^2 \theta} \frac{\partial^2 u}{\partial \varphi^2}=0

u(r,θ,φ)=R(r)Y(θ,φ)u(r, \theta, \varphi)=R(r) Y(\theta, \varphi), 代入上式, 可得

Yr2ddr(r2dRdr)+Rr2sinθθ(sinθYθ)+Rr2sin2θ2Yφ2=0\frac{Y}{r^2} \frac{d}{d r}\left(r^2 \frac{d R}{d r}\right)+\frac{R}{r^2 \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{R}{r^2 \sin ^2 \theta} \frac{\partial^2 Y}{\partial \varphi^2}=0

方程两边同乘以 r2/YRr^2 / Y R, 整理可得

1Rddr(r2dRdr)=1Ysinθθ(sinθYθ)1Ysin2θ2Yφ2=λ\frac{1}{R} \frac{d}{d r}\left(r^2 \frac{d R}{d r}\right)=-\frac{1}{Y \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)-\frac{1}{Y \sin ^2 \theta} \frac{\partial^2 Y}{\partial \varphi^2}=\lambda

欧拉方程:

ddr[r2dR(r)dr]λR(r)=0\frac{d}{d r}\left[r^2 \frac{d R(r)}{d r}\right]-\lambda R(r)=0

球谐函数方程:

Y(θ,φ)=Θ(θ)Φ(φ)Y(\theta, \varphi)=\Theta(\theta) \Phi(\varphi), 代入球谐函数方程

Φsinθddθ(sinθdΘdθ)+Θsin2θd2Φdφ2+λΘΦ=0\frac{\Phi}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\frac{\Theta}{\sin ^2 \theta} \frac{d^2 \Phi}{d \varphi^2}+\lambda \Theta \Phi=0

方程两边同乘以 sin2θΘΦ\frac{\sin ^2 \theta}{\Theta \Phi}, 整理可得

sinθΘddθ(sinθdΘdθ)+λsin2θ=1Φd2Φdφ2=μ\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\lambda \sin ^2 \theta=-\frac{1}{\Phi} \frac{d^2 \Phi}{d \varphi^2}=\mu

最终, 2u(r,θ,φ)=0\nabla^2 u(r, \theta, \varphi)=0 分离为三个二阶常微分方程:

Φ(φ)\boldsymbol{\Phi}(\boldsymbol{\varphi}) 的方程: d2Φ(φ)dφ2+μΦ(φ)=0,0φ2π\quad \frac{d^2 \Phi(\varphi)}{d \varphi^2}+\mu \Phi(\varphi)=0, \quad 0 \leq \varphi \leq 2 \pi

Θ(θ)\boldsymbol{\Theta}(\theta) 的方程: sinθddθ[sinθdΘ(θ)dθ]+(λsin2θμ)Θ(θ)=0\quad \sin \theta \frac{d}{d \theta}\left[\sin \theta \frac{d \Theta(\theta)}{d \theta}\right]+\left(\lambda \sin ^2 \theta-\mu\right) \Theta(\theta)=0

欧拉方程: ddr[r2dR(r)dr]λR(r)=0\quad \frac{d}{d r}\left[r^2 \frac{d R(r)}{d r}\right]-\lambda R(r)=0

二、欧拉方程

欧拉方程的通解为:

R(r)=Clrl+Dlrl+1,l=0,1,2,R(r)=C_l r^l+\frac{D_l}{r^{l+1}}, \quad l=0,1,2, \cdots

三、Φ(φ)\Phi(\varphi) 本征方程

构成本征问题

{d2Φ(φ)dφ2+μΦ(φ)=0,μ 任意常数 Φ(0)=Φ(2π),Φ(0)=Φ(2π)\left\{\begin{array}{l} \frac{d^2 \Phi(\varphi)}{d \varphi^2}+\mu \Phi(\varphi)=0, \mu \text { 任意常数 } \\ \Phi(0)=\Phi(2 \pi), \Phi^{\prime}(0)=\Phi^{\prime}(2 \pi) \end{array}\right.

(1)当 μ>0\mu > 0 时,设 μ=m2\mu = m^2

本征值: μ=m2\quad \mu=m^2
本征函数: Φm(φ)=Cmcosmφ+Dmsinmφ,m=1,2,3,\quad \Phi_m(\varphi)=C_m \cos m \varphi+D_m \sin m \varphi, \quad m=1,2,3, \cdots

(2)当 μ=0\mu = 0

本征值: μ=0\quad \mu=0
本征函数: Φ0(φ)=C\quad \Phi_0(\varphi)=C

(3)当 μ<0\mu < 0 时,设 μ=m2\mu = -m^2

不满足周期性边界条件

综上,将第(1)种情况和第(2)种情况合并,本征值和本征函数分别为

μ=m2;Φm(φ)=Amcosmφ+Bmsinmφ,m=0,1,2,\mu=m^2 ; \quad \Phi_m(\varphi)=A_m \cos m \varphi+B_m \sin m \varphi, \quad m=0,1,2, \cdots

cosmφ\cos m \varphisinmφ\sin m \varphi 构成完备的本征函数系:

{1,cosφ,cos2φ,;sinφ,sin2φ,sin3φ,}\{1, \cos \varphi, \cos 2 \varphi, \cdots ; \sin \varphi, \sin 2 \varphi, \sin 3 \varphi, \cdots\}

也可以写成复数形式

Φm(φ)=Cmeimφ,m=0,±1,±2,\Phi_m(\varphi)=C_m e^{i m \varphi}, m=0, \pm 1, \pm 2, \cdots

eimφe^{i m \varphi} 构成完备的本征函数系

{1,eiφ,eiφ,ei2φ,ei2φ,}\left\{1, e^{i \varphi}, e^{-i \varphi}, e^{i 2 \varphi}, e^{-i 2 \varphi}, \cdots\right\}

需要注意的是,由于要保证本征函数系内不同的本征函数都是线性无关的,因此,
本征函数解写成三角函数形式和指数函数形式时,参数 mm 的取值范围并不相同。

四、Θ(θ)\Theta(\theta) 本征方程

sinθddθ[sinθdΘ(θ)dθ]+(λsin2θμ)Θ(θ)=0,0θπ\sin \theta \frac{d}{d \theta}\left[\sin \theta \frac{d \Theta(\theta)}{d \theta}\right]+\left(\lambda \sin ^2 \theta-\mu\right) \Theta(\theta)=0, \quad 0 \leq \theta \leq \pi

μ=m2\mu=m^2 代入上式, 并令 x=cosθ,y(x)=Θ(θ)x=\cos \theta, y(x)=\Theta(\theta), 可得连带勒让德方程

ddx[(1x2)dy(x)dx]+(λm21x2)y(x)=0,1x1\frac{d}{d x}\left[\left(1-x^2\right) \frac{d y(x)}{d x}\right]+\left(\lambda-\frac{m^2}{1-x^2}\right) y(x)=0, \quad-1 \leq x \leq 1

m=0m=0 时, 连带勒让德方程退化为勒让德方程

ddx[(1x2)dy(x)dx]+λy(x)=0,1x1\frac{d}{d x}\left[\left(1-x^2\right) \frac{d y(x)}{d x}\right]+\lambda y(x)=0, \quad-1 \leq x \leq 1