一、由氢原子核外电子满足的薛定谔方程导出径向方程

氢原子核外电子满足的薛定谔方程(含时)

iΨ(r,t)t=(22μe2e2r)Ψ(r,t)i \hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t}=\left(-\frac{\hbar^2}{2 \mu_e} \nabla^2-\frac{e^2}{r}\right) \Psi(\boldsymbol{r}, t)

Ψ(r,t)=ψ(r)T(t)\Psi(\boldsymbol{r}, t)=\psi(\boldsymbol{r}) T(t), 代入上述方程,可得:

(22μe2e2r)ψ(r)=Eψ(r)T(t)+iET(t)=0\begin{aligned} & \left(-\frac{\hbar^2}{2 \mu_e} \nabla^2-\frac{e^2}{r}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r}) \\ & T^{\prime}(t)+\frac{i}{\hbar} E T(t)=0 \end{aligned}

得到氢原子核外电子满足的定态(本征)薛定谔方程
氢原子的电子定态波函数ψ(r,θ,φ)\psi(r, \theta, \varphi),满足定态薛定谔方程和波函数平方可积条件,则

{(22μe2e2r)ψ(r,θ,φ)=Eψ(r,θ,φ)02π0π0ψ(r,θ,φ)2r2sinθdrdθdφ=1\left\{\begin{array}{l} \left(-\frac{\hbar^2}{2 \mu_e} \nabla^2-\frac{e^2}{r}\right) \psi(r, \theta, \varphi)=E \psi(r, \theta, \varphi) \\ \int_0^{2 \pi} \int_0^\pi \int_0^{\infty}|\psi(r, \theta, \varphi)|^2 r^2 \sin \theta d r d \theta d \varphi=1 \end{array}\right.

2=1r2r(r2r)+1r2sinθθ(sinθθ)+1r2sin2θ2φ2\nabla^2=\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial}{\partial r}\right)+\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^2 \sin ^2 \theta} \frac{\partial^2}{\partial \varphi^2}

设波函数ψ(r,θ,φ)=R(r)Y(θ,φ)\psi(r, \theta, \varphi)=R(r) Y(\theta, \varphi),代入定态薛定谔方程,整理可得

1Rddr(r2dRdr)+2μer2e2+2μer22E=1Ysinθθ(sinθYθ)1Ysin2θ2Yφ2=l(l+1)\frac{1}{R} \frac{d}{d r}\left(r^2 \frac{d R}{d r}\right)+\frac{2 \mu_e r}{\hbar^2} e^2+\frac{2 \mu_e r^2}{\hbar^2} E=-\frac{1}{Y \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)-\frac{1}{Y \sin ^2 \theta} \frac{\partial^2 Y}{\partial \varphi^2}=l(l+1)

关于角度的球谐函数方程

1sinθθ[sinθY(θ,φ)θ]+1sin2θ2Y(θ,φ)φ2+l(l+1)Y(θ,φ)=0\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial Y(\theta, \varphi)}{\partial \theta}\right]+\frac{1}{\sin ^2 \theta} \frac{\partial^2 Y(\theta, \varphi)}{\partial \varphi^2}+l(l+1) Y(\theta, \varphi)=0

球谐函数方程的解为球谐函数

Yl,m(θ,φ),l=0,1,2,,m=0,±1,,±l.Y_{l, m}(\theta, \varphi), \quad l=0,1,2, \cdots, \quad m=0, \pm 1, \cdots, \pm l .

径向波函数R(r)R(r)的本征方程

ddr[r2dR(r)dr]+[2μer22(e2r+E)]R(r)l(l+1)R(r)=0\frac{d}{d r}\left[r^2 \frac{d R(r)}{d r}\right]+\left[\frac{2 \mu_e r^2}{\hbar^2}\left(\frac{e^2}{r}+E\right)\right] R(r)-l(l+1) R(r)=0

二、径向方程的化简

为求解下,对其进行简化

ddr[r2dR(r)dr]+[2μer22(e2r+E)]R(r)l(l+1)R(r)=0\frac{d}{d r}\left[r^2 \frac{d R(r)}{d r}\right]+\left[\frac{2 \mu_e r^2}{\hbar^2}\left(\frac{e^2}{r}+E\right)\right] R(r)-l(l+1) R(r)=0

R(r)=u(r)rR(r)=\frac{u(r)}{r},代入径向波函数R(r)R(r)的方程,可得

d2u(r)dr2+[2μe2e2r+2μeE2l(l+1)r2]u(r)=0\frac{d^2 u(r)}{d r^2}+\left[\frac{2 \mu_e}{\hbar^2} \frac{e^2}{r}+\frac{2 \mu_e E}{\hbar^2}-\frac{l(l+1)}{r^2}\right] u(r)=0

α=2μeE2,ρ=2αr,u(r)=ω(ρ)\alpha=\sqrt{\frac{-2 \mu_e E}{\hbar^2}}, \rho=2 \alpha r, u(r)=\omega(\rho),得到 ω(ρ)\omega(\rho) 的二阶常微分方程

d2ω(ρ)dρ2+[μee2α21ρ14l(l+1)ρ2]ω(ρ)=0\frac{d^2 \omega(\rho)}{d \rho^2}+\left[\frac{\mu_e e^2}{\alpha \hbar^2} \frac{1}{\rho}-\frac{1}{4}-\frac{l(l+1)}{\rho^2}\right] \omega(\rho)=0

β=μee2α2\beta=\frac{\mu_e e^2}{\alpha \hbar^2},则ω(ρ)\omega(\rho)的方程简化为

d2ω(ρ)dρ2+[βρ14l(l+1)ρ2]ω(ρ)=0,ρ[0,)\frac{d^2 \omega(\rho)}{d \rho^2}+\left[\frac{\beta}{\rho}-\frac{1}{4}-\frac{l(l+1)}{\rho^2}\right] \omega(\rho)=0 \quad , \rho \in[0, \infty)

三、由渐近行为试探出部分解

d2ω(ρ)dρ2+[βρ14l(l+1)ρ2]ω(ρ)=0,ρ[0,)\frac{d^2 \omega(\rho)}{d \rho^2}+\left[\frac{\beta}{\rho}-\frac{1}{4}-\frac{l(l+1)}{\rho^2}\right] \omega(\rho)=0 \quad , \rho \in[0, \infty)

(1)当ρ\rho \rightarrow \infty,方程退化为

d2ω(ρ)dρ214ω(ρ)=0\frac{d^2 \omega(\rho)}{d \rho^2}-\frac{1}{4} \omega(\rho)=0

其通解为

ω(ρ)=Aeρ/2+Beρ/2,ρ=2αr\omega(\rho)=A e^{-\rho / 2}+B e^{\rho / 2}, \quad \rho=2 \alpha r

径向函数 R(r)=u(r)/rR(r)=u(r) / rrr \rightarrow \infty 时趋于零,通解退化为

ω(ρ)=Aeρ/2\omega(\rho)=A e^{-\rho / 2}

(2)当ρ0\rho \rightarrow 0,方程退化为

d2ω(ρ)dρ2l(l+1)ρ2ω(ρ)=0\frac{d^2 \omega(\rho)}{d \rho^2}-\frac{l(l+1)}{\rho^2} \omega(\rho)=0

其通解为

ω(ρ)=Cρl+1+Dρl,ρ=2αr\omega(\rho)=C \rho^{l+1}+D \rho^{-l}, \quad \rho=2 \alpha r

径向函数 R(r)=u(r)/rR(r)=u(r) / rr0r \rightarrow 0 时应为有限值, 通解退化为

ω(ρ)=Cρl+1\omega(\rho)=C \rho^{l+1}

四、严格解形式的导出

ρ\rho \rightarrow \infty 时, ω(ρ)\omega(\rho) 方程的渐进解

ω(ρ)=Aeρ/2\omega(\rho)=A e^{-\rho / 2}

ρ0\rho \rightarrow 0 时, ω(ρ)\omega(\rho) 方程的渐进解

ω(ρ)=Cρl+1\omega(\rho)=C \rho^{l+1}

于是 ω(ρ)\omega(\rho) 方程的严格解可写为

ω(ρ)=eρ/2ρl+1y(ρ),\omega(\rho)=e^{-\rho / 2} \rho^{l+1} y(\rho) \quad,

y(ρ)y(\rho) 为待确定的函数

将上式代入

d2ω(ρ)dρ2+[βρ14l(l+1)ρ2]ω(ρ)=0,ρ[0,)\frac{d^2 \omega(\rho)}{d \rho^2}+\left[\frac{\beta}{\rho}-\frac{1}{4}-\frac{l(l+1)}{\rho^2}\right] \omega(\rho)=0 \quad , \rho \in[0, \infty)

可得

ρy(ρ)+(2l+2ρ)y(ρ)+(βl1)y(ρ)=0\rho y^{\prime \prime}(\rho)+(2 l+2-\rho) y^{\prime}(\rho)+(\beta-l-1) y(\rho)=0

为了书写的简洁,令μ=2l+1,λ=βl1\mu=2 l+1, \lambda=\beta-l-1, 则 y(ρ)y(\rho) 的方程简化为

ρy(ρ)+(μ+1ρ)y(ρ)+λy(ρ)=0,ρ[0,)\rho y^{\prime \prime}(\rho)+(\mu+1-\rho) y^{\prime}(\rho)+\lambda y(\rho)=0, \quad \rho \in[0, \infty)

即为连带拉盖尔方程

对于氢原子的定态问题而言,上面连带拉盖尔方程的解还需满足径向函数R(r)=u(r)/rR(r)=u(r)/rrr \rightarrow \infty时趋于0的边界条件。即通解 y(ρ)y(\rho)ρ\rho \rightarrow \infty 时的发散性不能超过函数 eρ/2e^{\rho / 2}